1.数粒原理:
视觉相机对高速移动的物体进行逐行扫描,生成一张完整的图像,上位机从相机取出图像,通过自研究算法,根据大小尺寸,轨迹跟踪,距离变换,通过算法计算出数量,通过控制下位机控制机构达到准确计数的目的。
2.产品特点:
精确高:拥有工业数粒领域内的高精确度,包装精度根据产品不同,精度可能达到99%-100%。
速度快:高速的数粒速度。对细小颗粒物料,手机螺丝,药品,衬衫钮扣、银触点,五金件。
通用性好:适用工业生产环境的多品种多规格、少批量的生产数粒包装形式。
3.视觉计数与称重对比:
视觉软件使用不用校证,只需调整参数,无须维护,精度比称重高。
称重需校证,维护,影响精度。
3.计数算法实现方式:
1,图像变换:(空域与频域、几何变换、色度变换、尺度变换)
- 几何变换:图像平移、旋转、镜像、转置;
- 尺度变换:图像缩放、插值算法(最近邻插值、线性插值、双三次插值);
- 空间域与频域间变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,有时候需要将空间域变换到频域进行处理。例如:傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为频域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。
2、图像增强:
图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。
- 灰度变换增强(线性灰度变换、分段线性灰度变换、非线性灰度变换);
- 直方图增强(直方图统计、直方图均衡化);
- 图像平滑/降噪(邻域平均法、加权平均法、中值滤波、非线性均值滤波、高斯滤波、双边滤波);
- 图像(边缘)锐化:梯度锐化,Roberts算子、Laplace算子、Sobel算子等;
3、纹理分析(取骨架、连通性);
4、图像分割:
图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。
(1)阈值分割(固定阈值分割、最优/OTSU阈值分割、自适应阈值分割);
(2)基于边界分割(Canny边缘检测、轮廓提取、边界跟踪);
(3)Hough变换(直线检测、圆检测);
(4)基于区域分割(区域生长、区域归并与分裂、聚类分割);
(5)色彩分割;
(6)分水岭分割;
5、图像特征:
(1)几何特征(位置与方向、周长、面积、长轴与短轴、距离(欧式距离、街区距离、棋盘距离));
(2)形状特征(几何形态分析(Blob分析):矩形度、圆形度、不变矩、偏心率、多边形描述、曲线描述);
(3)幅值特征(矩、投影);
(4)直方图特征(统计特征):均值、方差、能量、熵、L1范数、L2范数等;直方图特征方法计算简单、具有平移和旋转不变性、对颜色像素的精确空间分布不敏感等,在表面检测、缺陷识别有不少应用。
(5)颜色特征(颜色直方图、颜色矩)
(6)局部二值模式( LBP)特征:LBP对诸如光照变化等造成的图像灰度变化具有较强的鲁棒性,在表面缺陷检测、指纹识别、光学字符识别、人脸识别及车牌识别等领域有所应用。由于LBP 计算简单,也可以用于实时检测。
6、图像/模板匹配:
轮廓匹配、归一化积相关灰度匹配、不变矩匹配、最小均方误差匹配
7、色彩分析:
色度、色密度、光谱、颜色直方图、自动白平衡
8、图像数据编码压缩和传输:
图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
9、表面缺陷目标识别算法:
传统方法:贝叶斯分类、K最近邻(KNN)、人工神经网络(ANN)、支持向量机(SVM)、K-means等;
10、图像分类(识别):
图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。
评论